Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus
نویسندگان
چکیده
Developmental and tissue-specific differences in isoforms allow Na+, K+-ATPase function to be tightly regulated, as they control sensitivity to ions and inhibitors. Uterine contraction relies on the activity of the Na+, K+ATPase, which creates ionic gradients that drive excitation-contraction coupling. It is unknown whether Na+, K+ATPase isoforms are regulated throughout pregnancy or whether they have a direct role in modulating uterine contractility. We hypothesized that gestation-dependent differential expression of isoforms would affect contractile responses to Na+, K+ATPase α subunit inhibition with ouabain. Our aims were therefore: (1) to determine the gestation-dependent expression of mRNA transcripts, protein abundance and tissue distribution of Na+, K+ATPase isoforms in myometrium; (2) to investigate the functional effects of differential isoform expression via ouabain sensitivity; and (3) if changes in contractile responses can be explained by changes in intracellular [Ca2+]. Changes in abundance and distribution of the Na+, K+ATPase α, β and FXYD1 and 2 isoforms, were studied in rat uterus from nonpregnant, and early, mid-, and term gestation. All α, β subunit isoforms (1,2,3) and FXYD1 were detected but FXYD2 was absent. The α1 and β1 isoforms were unchanged throughout pregnancy, whereas α2 and α3 significant decreased at term while β2 and FXYD1 significantly increased from mid-term onwards. These changes in expression correlated with increased functional sensitivity to ouabain, and parallel changes in intracellular Ca2+, measured with Indo-1. In conclusion, gestation induces specific regulatory changes in expression of Na+, K+ATPase isoforms in the uterus which influence contractility and may be related to the physiological requirements for successful pregnancy and delivery.
منابع مشابه
O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملPostnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. Conservation of biphasic ouabain affinity.
The cardiac glycoside sensitivity of the rat heart changes during postnatal maturation and in response to certain pathological conditions. The Na,K-ATPase is thought to be the receptor for cardiac glycosides, and there are three isozymes of its catalytic (alpha) subunit with different cardiac glycoside affinities: alpha 1 (low affinity) and alpha 2 and alpha 3 (high affinity). We examined the d...
متن کاملIntraperitoneal infusion of proinflammatory cytokines does not cause activation of the rat uterus during late gestation.
Increased concentrations of IL-1beta and TNF-alpha have been associated with parturition. However, the role of these cytokines is unknown. Before parturition, the uterus undergoes a process of activation, during which there are significant changes in expression of genes associated with increased uterine contractility, including the receptors for oxytocin (OT) and prostaglandin (PG)F(2alpha) (FP...
متن کاملEndogenous cardiac glycosides: hormones using the sodium pump as signal transducer.
The search for an endogenous digitalis has led to the identification of the cardenolides ouabain and digoxin and the bufadienolide marinobufagenin in mammalian tissues and biological fluids. Ouabain's release from adrenal glands is under the control of epinephrine and angiotensin II; hence, its blood concentration changes rapidly on physical exercise. It also is controlled by brain areas sensin...
متن کاملA natriuretic hormone-binding site on the sodium pump.
The Na ,K -ATPase, or “sodium pump,” is an integral membrane protein that provides an energetic underpinning to salt and nutrient reabsorption in the nephron, as well as being the central modulator of fluid and electrolyte homeostasis in humans.1,2 The exclusive basolateral localization of the sodium pump in renal (and gastrointestinal) epithelia and its functional coupling to apical sodium-dep...
متن کامل